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Research Outline and Literature Review
• Stochastic volatility model (Kim Shephard & Chib 1998)
• MCMC

• Hamiltonian Monte Carlo, No-U-Turn Sampler (Hoffman and
Gelman, 2014)

• Kim Shephard & Chib (KSC) bespoke MCMC strategy

• Compare performance of MCMC
• Simulation Based Calibration (Talts, Betancourt, Simpson,

Vehtari, and Gelman 2020): check if MCMC algorithms are
returning the correct posterior estimates on average

• Efficiency: Effective sample size

• Model reparameterisation - improving MCMC performance
(Strickland, Martin, and Forbes, 2008)

• KSC Importance Weights - correcting approximation error
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Daily Log returns S&P 500
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Stochastic Volatility model

KSC (1998) estimate a univariate discrete time SV model which
models the variance as a latent stochastic process.

𝑦𝑡 =𝑒ℎ𝑡/2𝜖𝑡
ℎ𝑡+1 =𝜇 + 𝜙(ℎ𝑡 − 𝜇) + 𝜎𝜂𝜂𝑡

ℎ1 ∼N (𝜇, 𝜎2
𝜂

1 − 𝜙2 )

𝜖𝑡 ∼N(0, 1) 𝜂𝑡 ∼ N(0, 1)

• State space model
• More parameters/unknowns then data points.
• Can estimate using Bayesian methods
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Challenge 1: Comparing posteriors with no ground truth
Estimating the model on real data (S&P 500)
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Challenge 2: Limitations of a single simulation
Estimate model on simulated data
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Challenge 2: Limitations of a single simulation
Estimate model on simulated data
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Research goal

• To validate the computation of different MCMC algorithms in
the context of Bayesian stochastic volatility (SV) models

• Check whether our algorithm is returning the correct
posteriors on average using simulation based calibration (Talts
et al, 2020)

• Compare Hamiltonian Monte Carlo with KSC (1998)
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Simulation Based Calibration
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Simulation Based Calibration (SBC)
Let 𝜃 be a scalar parameter and 𝑦 represent the dataset. Start with
a draw from the prior distribution:

𝜃𝑠𝑖𝑚 ∼ 𝜋(𝜃)

Generate a dataset given by the prior draws.

𝑦𝑠𝑖𝑚 ∼ 𝜋(𝑦|𝜃𝑠𝑖𝑚)

Then take draws from the posterior distribution generated by a
MCMC algorithm or estimation strategy (HMC or KSC in our
case).

{𝜃1, … , 𝜃𝐵} ∼ 𝜋(𝜃|𝑦𝑠𝑖𝑚)
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Simulation Based Calibration (SBC)

The rank statistic for a given parameter and simulation is given by:

𝑟 = rank({𝜃1, … , 𝜃𝐵}, 𝜃𝑠𝑖𝑚) =
𝐵

∑
𝑏=1

1[𝜃𝑏 < 𝜃𝑠𝑖𝑚]

This completes one iteration of SBC.

Talts et al. (2020) prove if the algorithm is calibrated (that is,
returning correct posterior estimates on average), then the rank
statistics is drawn from a uniform distribution.

Therefore, if we run multiple iterations of SBC, we should check
whether the distribution of rank statistics is uniform.
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Simulation Based Calibration (SBC)

Another key result for calibration is that the posterior averaged
over the data and true parameters is equal to the prior distribution.

𝜋(𝜃) = ∫ ∫ 𝜋(𝜃|𝑦𝑠𝑖𝑚)𝜋(𝑦𝑠𝑖𝑚, 𝜃𝑠𝑖𝑚)𝑑𝜃𝑠𝑖𝑚𝑑𝑦𝑠𝑖𝑚

Two key takeaways, if the MCMC calibrated then:

1) Rank statistics should be uniformly distributed

2) The average posterior distribution over SBC iterations should
equal the prior distribution
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Interpretation of miscalibration

Reproduced from Talts et al. (2020)
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Interpretation of miscalibration
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Markov Chain Monte Carlo (MCMC) algorithms
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Stochastic Volatility model
KSC (1998) estimate a univariate discrete time SV model which
models the variance as a latent stochastic process.

𝑦𝑡 =𝑒ℎ𝑡/2𝜖𝑡
ℎ𝑡+1 =𝜇 + 𝜙(ℎ𝑡 − 𝜇) + 𝜎𝜂𝜂𝑡

ℎ1 ∼N (𝜇, 𝜎2
𝜂

1 − 𝜙2 )

𝜖𝑡 ∼N(0, 1) 𝜂𝑡 ∼ N(0, 1)

With priors:
𝜇 ∼ N(0, 10)

𝜎2
𝜂 ∼ IG(5/2, (0.01 × 5)/2)

𝜙∗ ∼ Beta(20, 1.5)
𝜙 = 2𝜙∗ − 1.

16



Stochastic Volatility model
KSC (1998) estimate a univariate discrete time SV model which
models the variance as a latent stochastic process.

𝑦𝑡 =𝑒ℎ𝑡/2𝜖𝑡
ℎ𝑡+1 =𝜇 + 𝜙(ℎ𝑡 − 𝜇) + 𝜎𝜂𝜂𝑡

ℎ1 ∼N (𝜇, 𝜎2
𝜂

1 − 𝜙2 )

𝜖𝑡 ∼N(0, 1) 𝜂𝑡 ∼ N(0, 1)

With priors:
𝜇 ∼ N(0, 10)

𝜎2
𝜂 ∼ IG(5/2, (0.01 × 5)/2)

𝜙∗ ∼ Beta(20, 1.5)
𝜙 = 2𝜙∗ − 1.

16



Kim Shephard Chib (1998)
• Estimate states using a standard Kalman filter, however, this

requires the model to be linear and Gaussian.

𝑦𝑡 = 𝑒ℎ𝑡/2𝜖𝑡
𝑦∗

𝑡 = 𝑙𝑜𝑔(𝑦2
𝑡 ) = ℎ𝑡 + 𝑧𝑡

• 𝑧𝑡 = 𝑙𝑜𝑔(𝜖2
𝑡 ) follows a log chi-squared distribution

• Approximate log chi squared error using Gaussian mixture
model

• Model is now linear in with respect to the states and
conditionally Gaussian

• Kalman Filter to jointly sample states
• Sample 𝜇 and 𝜎2 directly from conjugate posterior

dsitributions
• Metropolis Hastings to sample 𝜙
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Hamiltonian Monte Carlo (HMC)

• The Stan programming language’s implementation of
Hamiltonian Monte Carlo, the No-U-Turn Sampler (Hoffman
& Gelman 2014), will be compared with KSC’s strategy.

• Key innovations of HMC:
• Uses the gradients of the target posterior distribution to

generate an efficient path for the sampler to explore.
• Own programming language - can flexibly estimate wide range

of models
• Allows for direct sampling of the specified stochastic volatility

model
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Results
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Results

• 5000 SBC iterations
• For each SBC iteration:

• Simulate datasets of size T=1000
• 999 post burn-in/warmup posterior draws for HMC
• 9,999 post burn-in/warmup posterior draws for KSC
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HMC (5000 Iterations)
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KSC (5000 Iterations)
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Model reparameterisation
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Model reparameterisation

• Modify the model specification to (hopefully) improve MCMC
performance

• Reparameterised model is mathematically equivalent to
original model

• Express the same model in a different way

• HMC: Sample states from standard normal distribution (then
transform samples according to state equation)

• KSC: “Non centered parametersation” (Strickland, Martin,
and Forbes, 2008)
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Reparameterised HMC
First sample from a standard normal distribution and multiply by
the variance of the log volatility. The state vector is sampled with
mean centered on zero and variance equal to 𝜎2

𝜂

ℎ𝑠𝑡𝑑 ∼N(0, 1)
ℎ =ℎ𝑠𝑡𝑑 × 𝜎𝜂

Then apply the appropriate re-scaling to get samples from log
volatility.

ℎ1 =ℎ𝑠𝑡𝑑,1 × 𝜎𝜂
√1 − 𝜙2 + 𝜇

ℎ𝑡+1 =ℎ𝑠𝑡𝑑,𝑡+1 × 𝜎𝜂 + 𝜇 + 𝜙(ℎ𝑡 − 𝜇), 𝑡 ≠ 1

This returns log volatility as desired.
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Reparameterised KSC

The following parameterisation is described as non centered in
location. This follows the methodology outlined in Strickland,
Martin, Forbes (2008).

Starting with the log chi squared model:

𝑦∗
𝑡 =ℎ𝑡 + 𝑧𝑡

ℎ𝑡+1 =𝜇 + 𝜙(ℎ𝑡 − 𝜇) + 𝜎𝜂𝜂𝑡

Let 𝑔 be the demeaned state variable. Rewrite the demeaned state
equation 𝑔𝑡+1 to be non centered inlocation by subtracting average
volatility 𝜇.

𝑔𝑡 =ℎ𝑡 − 𝜇
𝑔𝑡+1 =𝜙𝑔𝑡 + 𝜎𝜂𝜂𝑡
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Reparameterised KSC

Return average volatility into measurement equation and rewrite as
a function of the non centered state equation:

𝑦∗
𝑡 =𝑔𝑡 + 𝜇 + 𝑧𝑡

𝑔𝑡+1 =𝜙𝑔𝑡 + 𝜎𝜂𝜂𝑡

The mean of the log volatility is now inside the measurement
equation and de-meaned from the state equation, where the initial
state is drawn from

𝑔1 ∼ N (0, 𝜎2
𝜂

1 − 𝜙2 )
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Reparameterised HMC (5000 Iterations)
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Reparameterised KSC (5000 Iterations)
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Conclusion
Limitations

• SBC is computationally intensive (required use of Monash
HPC Cluster)

• Difficult to check histograms for many parameters
• Can summarise rank statistic histograms into a single metric

using chi-squared statistic - can show more details during Q&A

• Unclear what is considered a “fair” comparison

What do we learn
• Reparameterised model with HMC performs best based on

calibration
• Not all reparameterisations improve MCMC performance
• SBC can help you understand that your algorithms are

behaving the way they should

30
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Questions
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Chi squared statistic

Let 𝑏𝑗 be the number of counts and 𝑒𝑗 the expected count in bin 𝑗
(where the expected count is a function of the number of bins and
data points under a uniform distribution). Then the chi squared
statistic is given by:

𝜒2 =
𝐽

∑
𝑗=1

(𝑏𝑗 − 𝑒𝑗)2

𝑒𝑗

A perfectly uniform distribution will return a chi squared statistic
of zero.
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Summarising state variables
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Kim Shephard Chib (1998)

Model is now linear but not Gaussian. KSC use a mixture of
Gaussians to approximate the first 4 moments of the log chi
squared distribution through moment matching. This is defined by:

𝑓(𝑧𝑡) =
𝐾

∑
𝑖=1

𝑞𝑖𝑓𝑁(𝑧𝑖|𝑚𝑖 − 1.2704, 𝜈2
𝑖 )

K is the mixture of 7 normal densities 𝑓𝑁 , component probabilities
𝑞𝑖, mean 𝑚𝑖 − 1.2704 and variance 𝜈2

𝑖 .
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